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1 Introduction
Testing is the most important practical technique for the validation of software systems.
Moreover, even if techniques like model checking will perhaps one day lead to the auto-
mated verification of software systems, testing remains an indispensible tool to assess the
correctness of the concrete physical operation of software systems on given hardware plat-
forms and in the context of larger, embedding systems. The ultimate reliability of critical
software systems that we now depend on for vital applications in everyday life (driving a
car, flying a plane, transferring money, operating on patients, etc.) can only be ascertained
by testing the final implementations of the hardware and software combinations involved.

Quasimodo has developed several algorithms and tools for firmly based testing of
embedded systems with an emphasis of handling quantiative constraints like complex
data, time, continuous behavior, probabilities, etc.

The latest version of these algorithms and tool components are already described in
the Deliverables D4.3, D4.4, D4.6, and D5.9. Hence, here we focus on some overall
evaluations, and future directions.

A distinguishing feature for Quasimodo algorithms and tools is that they are rooted in
well defined and well understood testing theories. This is not only of theoretical interst,
but of great practical importance as they determine 1) what implementations are con-
sidered correct, and thus provides sound verdict assignment, and 2) what observations a
test generation algorithm must do and how it should interpret these wrt. the specification.

We evaluate the major implemented tool components based on our experiences and
their application to case studies. We also discuss and compare these with external test
generation tools.

2 Ioco-based Testing

Participants
• Mark Timmer, University of Twente, NL;

• Ed Brinksma, University of Twente, NL;

• Mariëlle Stoelinga, University of Twente, NL;

Challenge
In spite of the important status of testing as a tool for reliable engineering, the consid-
eration of testing as subject for serious academic study is comparatively late in the de-
velopment of computer science, i.e., since the 1990s, as before that time most studies
concerning correctness were focussed on the development of theories for program and
system verification. Nevertheless, nowadays there is a considerable body of knowledge
concerning testing theories and tools, most notably as applications of formal methods for
concurrent systems and automata theory for dynamic system properties, and the theory of
abstract data types for static properties of data structures and operations on them.

The use of formal methods in the context of testing offers the instruments for address-
ing the following important issues:
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• The unambiguous specification of models that capture the allowed behaviours of
implementations under test;

• The precise definition of the criteria for conformance, i.e., the formal definition of
when the behaviour of an implementation can be considered correct with respect to
the specification. Such criteria are often referred to as implementation relations;

• The precise definition of relevant concepts such as test cases, test suites, test runs,
the validity of tests, etc;

• A well-defined basis for the development of algorithms for the derivation of valid
tests from specifications and the evaluation of test runs, and their implementation
in tools for test generation, execution and evaluation.

Results
To contribute to the field, in [11] we gave a comprehensive introduction to a framework for
testing based on formal modelling by labelled transition systems and theories of observ-
able behaviour that can be traced back to the process-algebraic approach to concurrency,
and process calculi such as CCS [9] and CSP [6]. This work was used as reading material
for the well-known Marktoberdorf Summer School.

What we presented is essentially an extension and reformulation of the ioco theory
first presented by Jan Tretmans [12, 14], which applies ideas first formulated by Brinksma
for synchronously communicating systems [4], to the much more practical setting of in-
put/output systems. The work by Brinksma, in turn, was inspired by the seminal paper
of De Nicola and Hennessy that first introduced a formalised notion of testing in process
algebra [5].

A central concept in the ioco theory is the notion of quiescence, which characterises
system states that will not produce any output response without the provision of a new in-
put stimulus. In the setting of input/output systems one generally assumes the systems to
be input-enabled: all input actions are always possible in all system states, i.e., input can
never be refused. This means that an input/output system is never formally deadlocked,
since one can always execute further (input) actions. In this context quiescence becomes
the meaningful representation of unproductive behaviour, comparable to deadlocked be-
haviour in the case of synchronously communicating systems.

Particular technical elegance of the proposed framework is achieved by representing
quiescence in a state by a special output action, representing the absence of ‘real’ outputs
in that state. This allows us to model the relevant implementation relations by the inclu-
sion relation over sets of traces of actions, including quiescence. Such sets of generalised
traces then capture the relevant notion of observable behaviour.

An important difference between our presentation and that of Tretmans is that we
formulated the whole theory completely in terms of (enriched) traces of labelled transition
systems without resorting to process algebraic constructs. Also, there are some subtler
differences, viz.:

• Our definition of quiescent transitions has been altered slightly, such that they are
preserved under determinisation of the transition systems;
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• We do not need the assumption that the transition systems are strongly convergent,
i.e. we do allow τ -loops in the implementations under test. In our set-up diverging
test runs simply do not affect the set of completed test runs, and therefore also do
not affect the test evaluations. If diverging test runs must be excluded to avoid
infinite internal computations at the test execution level, one must resort to standard
fairness assumptions;

• Our presentation does, in principle, allow for uncountable numbers of states and
actions, for which the framework remains intact. This is only useful, however, in
the presence of formalisms in which (test) processes over such uncountable sets can
be effectively characterised.

• We introduced a novel notion of consistency for test suites, requiring them to fail
any implementation that exhibits erroneous behaviour.

Over the years, the ioco framework has established itself as the robust core for a con-
siderable number of theories and tools for conformance testing in different settings, and
well-tested, real-life applications. The work in [11] contains the hard core of that success-
ful framework that represents our by now well-established understanding of the desired
relation between useful implementation relations for dynamic behaviour on the one hand,
and test generation and evaluation on the other hand. Specific results for applying the
framework to case studies in Quasimodo is described in Deliverable 5.10.

3 Implementation Relations for Real-Time
Model-Based Testing

Participants: Julien Schmaltz (ESI/RU)
Jan Tretmans (ESI)

Testing embedded systems requires not only to test the relation between inputs and
outputs, but also to test the timing between these events. A formal theory for model-based
testing of untimed systems is the ioco-theory [13]. The implementation relation ioco uses
labelled transition systems with inputs and outputs. A peculiar aspect of the ioco-theory
is to consider the absence of outputs, called quiescence, as a special observable event.

In real-time testing with Timed Automata, in addition to inputs and outputs, there
is also time that is observable: a tester can observe the passing of time, or can decide
not to provide an input for a certain period of time. This means that time passing, with
specific duration, occurs as an observable action in traces and observations. An issue with
time, from a testing perspective, is that it is neither input nor output, but a bit of both: a
system and its environment synchronize on time, and both can decide to let time pass, or
to perform an action first. Time might be called ‘semi-controllable’ and ‘semi-observable’
by the system as well as its environment.

Quiescence is the absence of outputs, now and in the (unbounded) future. Once we
have time in our tests, absence of outputs is always for a particular period of time. This is
observed by having time pass without any action occurring. This has triggered many dis-
cussions whether in timed testing the concept of quiescence is still necessary or desirable.
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Several extensions of ioco for real-time model-based testing, with and without qui-
escence, have been proposed in the literature. In Deliverable D4.1: Quantitative Testing
Theory, which was based on [10], we have presented, discussed, and compared a couple
of them.

In an extension of [10] we defined a new real-time implementation relation for timed
transition systems: tiocoη. This relation, in addition to inputs and outputs, has as an
observable event the observation of a fixed delay denoted with η, which may occur repet-
itively, but quiescence is no longer included.

Further investigations have shown that the tiocoη-relation, on the one hand, is very
intuitive. Non-conformance according to tiocoη is easily explained using realistic and
intuitive timed experiments, and the relation exactly formalizes what is being done in
real-time model-based testing tools and case studies – see Deliverable 5:10: Final report:
case studies and tool integration. On the other hand, the formal definition of tiocoη is
straightforward, and it can be shown under which conditions it relates to the other timed
implementation relations. In particular, it coincides with e-relativized timed input/output
conformance rtiocoe under the most-general environment e, which is the implementation
relation of UPPAAL-TRON; see Figure 1.

We conclude that tiocoη captures the intuitive meaning of real-time testing as well
as provides a strong basis for the further development of timed model-based testing. The
investigations on tiocoη are currently wrapped up, and prepared for publication.
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Figure 1: Overview of various timed implementation relations.

4 Timed Test Generation

Participants
• Brian Nielsen, Aalborg University, DK;

• Marius Mikucionis, Aalborg University, DK;

• Kim G. Larsen, Aalborg University, DK;

4.1 UPPAAL-TRON
UPPAAL-TRON is a model-based testing tool for (online) testing of real-time systems.
It implements real-time testing based on the concepts of timed automata specifications
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and timed (environment relativised) input/output conformance, thus having precise se-
mantics and a strong theoretical foundation. The tool implementation supports the full
UPPAAL Timed automata language, and uses its successful graphical editor/simulator.
The UPPAAL-TRON engine use and extend the symbolic reachability algorithms from
the UPPAAL verifier, thus leveraging from its efficient analysis algorithms, to compute
symbolic state-set enabling efficient handling of non-determinism and timing uncertainty.
Finally, it has a well defined API for programming customized adapters.

An evaluation of the experiences obtained from its development and application to
case studies (the two previous Danfoss refrigeration controller case studies, and the Myri-
anet WSN protocol, Poosl models, Autotrust cases described in Deliverable 5.10) indic-
ate that UPPAAL-TRON is a strong tool for detecting behavioral differences between the
model and an implementation. Especially it is found strong on timing compared with
other tools.

The case studies also point to areas of improvements:

It may be difficult to apply for people that are not familiar with its concepts, both with
respect to setting up, configuring, and running the tool, and visualizing and inter-
preting the results. In particular the adapter protocols require expert knowledge.

The virtual clock frame work is an excellent and applicable idea, but it must be general-
ized and easier to use.

Given that we have a sound core, we have already started to address these usability
issues. One effort is the development of the UPPAAL-TRON Graphical User Interface
described in Deliverable D5.9.

We are also re-thinking the adapter framework, and in particular the virtual clock
framework such that they are easier and more flexible to use. In particular the opening
of the virtial clock framework towards semi-black box implementations and model sim-
ulators. Also the adaptor framework should open up towards allowing the user to choose
between using different clocks as time base; the SUT may have its own clock, the test
host may have its, or there may be a common independent clock (virtual or physical).
Currently UPPAAL-TRON uses the test hosts clock as time base.

4.2 A probabilistic UPPAAL-TRON
The envisioned stochastic extension for (real-time) use-profile testing has not yet materi-
alized. Originally it was envisioned that this extension would be based on the algorithms
of the probabilistic version of the UPPAAL model checker; however, the Ph.D. Student
working on this task stopped.

The UPPAAL-TRON algorithm is randomized in three ways: In a given moment it
may

• Decide to stimulate (give an input) the SUT, or wait for outputs

– If the decision is to stimulate the system, it must decide what input to give; to
achieve this it computes the (input) actions currently enabled in the environ-
ment model
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– If the decision is to delay, then it has a choice of how much to wait; to achieve
this it computes the (maximum) delay permitted by the environment model.

Currently, these choices are resolved randomly uniformly distributed.
A requirement for use-profile based testing (in particular if used for reliability and

performance evaluation) is that the test sequences adhere to statistically sound samples
of the model, which must then have a well-defined timed stochastic semantics. Hence
more or less ad hoc extensions of the above based on weights on edges and distributions
of delays may not satisfy this requirement.

We are therefore pursuing to use the results from statistical model-checking of real-
time systems (See Deliverable 2.5) as basis for our future implementation which has re-
cently re-gained momentum from the implementation of statistical model checking in
UPPAAL.

5 Review of Model-Based Testing Tools in the Case Stud-
ies

Participants: Jan Tretmans (ESI)

Context

In Quasimodo we have worked on different model-based testing (MBT) case studies, in
which we used various MBT tools; see Deliverable 5.10: “Final report: case studies and
tool integration”. In this section we will briefly review the use of the different tools in the
case studies.

The MBT tools that were used were the ones under development in Quasimodo:
UPPAAL-TRON, JTORX, and TORXAKIS; two additional ones: GAST and Conformiq,
and two test tools specifically made for the case study at hand.

Contribution

We first review the main conclusions of the MBT case studies:

1. Testing the Myrianed WSN gMAC protocol: The most elaborate case study was
testing the WSN gMAC protocol. Several models have been developed, and the
three Quasimodo MBT tools: UPPAAL-TRON, JTORX, and TORXAKIS have been
used. Model-based testing turned out to be feasible with all three tools, many and
long tests were run on the SUT, it increased understanding of the behaviour of the
protocol, and some behaviours that did not correspond with the written document-
ation were detected.

The behaviour of a WSN node is very non-deterministic and time-critical, e.g., the
node can determine autonomously in which slot it will send, and reception of a
message can lead to completely different subsequent behaviour based only on the
time when it was received.

9
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Models were loosely specified, i.e., they were partial and left details open,, through
nondeterminism, because these details were unknown and could not be derived from
the documentation.

The SUT consisted of the original ’C’-code compiled and executed on a standard
PC in a test environment that redirected inputs, outputs, and clock ticks through a
socket connection to the model-based test tool. Due to the use of simulated time the
progress of time was much slower than ’real’ real-time, thus making long-lasting
test runs.

When comparing the three tools there are differences. TORXAKIS cannot directly
deal with real-time – clock ticks must be explicitly added to the model and this
is cumbersome – but it can deal with data in models: manipulations on all kind
of data, also for counting clock ticks, are easily performed. UPPAAL-TRON and
JTORX (real-time version [3]) can deal with real-time directly which leads to much
more compact and readable models.

Whereas synchronization in simulated time between TORXAKIS and the SUT was
easy and straightforward because all clock ticks were represented as explicit actions
in the model, this turned out to be more tricky for UPPAAL-TRON. A special ad-
apter, i.e. glue-code, between UPPAAL-TRON and the SUT was developed with a
synchronization protocol so that the timing delays of UPPAAL-TRON were correctly
mapped to the clock ticks of the SUT, and vice versa.

2. Model-based testing of the Hydac case: This case study turned out to be so spe-
cific that no general MBT tool was used. First, the connection to he Simulink/Mat-
lab environment (the SUT) required special programming. Second, the testing in-
volved generation of consumption curves, which are sequences of data values sat-
isfying complex sets of constraints. This was implemented directly in Java. The
Quasimodo tools cannot deal with such constraints, yet. Only TORXAKIS can deal
with data of such complexity, but it cannot deal yet in a systematic way with com-
plex constraints. Moreover, TORXAKIS, being implemented in Haskell, in which
also the models have to written, has a steep learning curve, which was considered
not worthwhile for this case study. For future research, a solution with a constraint-
or SMT solver might be investigated.

3. Testing of Herschel/Planck: This project has just started. Models have been made
for use with UPPAAL-TRON, and the adapter is under construction, so far without
problems.

4. Model-based testing of electronic passports: The electronic passport was tested
with TORXAKIS, which was successful. A model was written in Haskell, with
(restricted) use of data values.

5. Model-based testing of a software bus at Neopost: A model was written in mCRL2,
validated through simulation, and the implementation wast tested with JTORX.
Modelling payed off, and subtle bugs, not found with traditional testing, were de-
tected with JTORX.

6. Model-based testing POOSL–UPPAAL: Model-based testing was used to compare
two models in different languages. This was successful but in its initial phase.
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7. Testing automated trust anchor updating in Autotrust: An implementation of an In-
ternet protocol was successfully real-time tested with UPPAAL-TRON with respect
to a model constructed from the corresponding RFC.

8. Testing a printer controller: control part: The state-based part of a printer con-
troller was tested with TORXAKIS, GAST, a specialized PYTHON tool, and tried
with Conformiq. The main features of the SUT are parallelism and resulting non-
determinism. TORXAKIS can in principle deal with nondeterminism but with too
much of it it results in a classical state-space explosion due to inefficient internal
data structures. GAST can deal with nondeterminism and a couple of previously
undetected bugs were detected with it. The disadvantage is that the model (in the
functional language Clean) is cryptic and tricky to write. The PYTHON-based tool
was written from scratch for this case, and worked well, but could only deal with
very restricted parallelism. The commercial tool Conformiq cannot deal with this
kind of SUTs because it does not support nondeterminism and only very restricted
kinds of parallelism.

9. Testing a printer controller: data part: The data part was completely stateless
but involved many data variables with constraints. This led to a data-space explo-
sion of possibilities. Equivalence partitioning combined with combinatorial testing
(pairwise testing) was used to keep this explosion a little bit under control.

Discussion

We discuss a couple of aspects: real-time, nondeterminism, state-space explosion, data-
space explosion, environment modelling, connection to SUT, usability, and integration.

Real-time Real-time behaviour is an important aspect of embedded systems. Real-time
testing must be supported in the modelling notation, and it should be built-in in the MBT
tool, preferably both ’real’ real-time and in simulated time. The most sophisticated tool
in this respect is currently UPPAAL-TRON.

Nondeterminism Concurrency, parallelism, abstraction, and partial specifications are
important aspects when making models of real-time systems. This means that an MBT
tool must support nondeterminism. Surprisingly, commercial tools like Conformiq, and
also Smartesting [15] do not support that. This implies these tools are not able to deal with
testing of systems like WSN. Also specifically developed MBT tools, e.g. programmed
in PYTHON, usually have difficulties in dealing with nondeterminism.

Having nondeterminism implies that a well-defined implementation relation must be
the basis of test generation, such as rtiocoe for UPPAAL-TRON, and ioco for JTORX
and TORXAKIS.

State-space explosion In on-line testing (see Deliverable D4.2: “Algorithms for off-
and on-line quantitative testing”) state-space explosion is much less of an issue then in
off-line tools with explicit state representation, yet, the experiments with TorXakis show
that it does not completely disappear in case nondeterminism plays an important role.
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Data-space explosion Apart from state-space explosion, also the data space may ex-
plode, with exponentially many possibilities of combining data parameters. Current
Quasimodo MBT tools cannot deal with this in a satisfactory manner. TORXAKIS can
deal with data and with all kinds of manipulations and calculations on data, but not yet
with huge data-explosion or complex constraint solving. Combinations with tools from
these domain, such as combinatorial testing tools and constraint solvers, must be further
elaborated.

Environment modelling UPPAAL-TRON makes it possible, or actually requires, that
the environment of the SUT is modelled too, so that unrealistic or physically impossible
test sequences are excluded. In JTORX and TORXAKIS the more general mechanism of
test purposes can be used for the same goal, but environment modelling is not that far
incorporated as in UPPAAL-TRON. On the other hand, models in UPPAAL-TRON must
be input-enabled which makes that partial specifications cannot be be directly used, but
must be made explicit.

Connection to SUT Connecting the MBT tool to the SUT requires development of an
adapter. Although some work has been done here, more is needed, in particular in case of
real-time behaviour: the synchronization of time between MBT tool and the SUT. Current
solutions in UPPAAL-TRON show that this is not trivial, and currently it requires quite
some specialized programming if it does not completely fit with the templates with are
currently provided in UPPAAL-TRON.

Usability While doing these case studies, JTORX had the nicest user interface of the
three, with logging and replay facilities, but in the mean time a GUI has been developed
for UPPAAL-TRON and plugged into the UPPAAL GUI to create an integrated environ-
ment for modelling, simulation, verification as well as testing; see Deliverable D5.9:
“Tool Components and Tool Integration”.

The printer controller case studies had as explicit goal that industry engineers would
use the MBT tools. However, the usability, documentation, and support of the MBT tools
are currently insufficient, so that this turned out to be not feasible.

Integration The Neopost case study shows that it is important to support a whole pro-
cess of model-based design, validation, simulation, and testing. JTORX with mCRL2
and UPPAAL-TRON with its GUI integration in the UPPAAL tool make steps forward, but
more is required, e.g., to linking to existing, industrial tools in the model-based area.

Perspective

Model-based testing has the potential to improve the testing process: a model is a precise
and unambiguous basis for testing, design errors are found during validation of mode,
longer, cheaper, more flexible, and provably correct tests are automatically generated,
test maintenance and regression testing are easier, and the extra effort of modelling is
compensated by better tests.

Good MBT tools are indispensable for the success of model-based testing. The current
Quasimodo tools are in a good position to become such tools. In various aspects they
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already outperform currently available commercial tools. But there are also areas for
improvement: combining the strengths of the three tools, and avoiding the weaknesses,
combining with external techniques and tools, e.g., constraint solving and combinatorial
testing, increase usability both in making models and in doing the testing, better linking
to other model-based and model-driven tools, and integration within existing industrial
testing processes.

6 A Comparison of some Model-Based Testing Tools
Participants: Fides Aarts (ESI/RU)

Jan Tretmans (ESI)

Introduction

Many MBT tools exist, both commercial and academic, tools with different modeling
notations, different test generation algorithms, on-line and off-line tools, different ways
of connecting to the SUT, etc. Without the intention of being complete, a list of MBT
tools would include:

AETG, Agatha, Agedis, Autolink, Conformiq Qtronic, Uppaal-Cover, GAST,
Gotcha, JTORX, MaTeLo, ParTeG, Phact/The Kit, QuickCheck, Reactis, RT-
Tester, SaMsTaG, Smartesting Test Designer, Spec Explorer, STG, TestGen,
TestComposer, TGV, TORX, TORXAKIS, T-Vec, UPPAAL-TRON, Tveda.

Given the abundance of MBT tools, it is difficult to select the most appropriate one that
satisfies the desired needs. In a little investigation, more intended to get insight into what
other MBT tools have to offer, than to do a fair and deep comparison, we had a look at
two Quasimodo MBT tools: JTORX and UPPAAL-TRON, and three external MBT tools:
GAST, MODELJUNIT, and GRAPHWALKER. We tried these tools on an implementation
of the simple toy-case study of the game “ Crossing the River, with a Wolf, a Goat, and
a Cabbage” (see, e.g.,1), also called FWGC puzzle (Farmer-Wolf-Goat-Cabbage), which
served as SUT. The selection of tools was based on practical criteria, like free availability,
and perceived initial ease of use.

We compared on the following criteria:

• does the tool support input generation and output checking;

• ease of connection between the SUT and the MBT tool (the adapter);

• code coverage of Java code of the SUT implementation; we used Cobertura2, an
open-source coverage tool for measuring and visualizing coverage of Java pro-
grams.

• supported implementation relation(s), as far as specified;

1http://www.mathcats.com/explore/river/crossing.html
2http://cobertura.sourceforge.net/
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• supported platforms;

• ease of use and documentation.

Description of the MBT Tools

JTORX JTORX is a Java-based tool developed to test whether an SUT is ioco-conforming
to a given specification [1]. It is based on the core functionality of TORX [2], but it con-
tains additional features, e.g. besides ioco, testing for uioco (extension of ioco that
can cope with underspecified traces) is possible. Another extension is the simulation fea-
ture that is included in JTORX. The simulator allows guided explorations, e.g., by using
the log of a test run. In JTORX specifications are defined as Labelled Transitions Sys-
tems (LTS), which can be represented in Aldebaran (.aut) or GraphML (.graphml) format.
Implementations can be given in the same format (then they are simulated) or as a real
program.

The communication to the SUT is accomplished via standard in- and output, a TCP
connection, or with the TORX adapter protocol. For the FGCW puzzle we used standard
input and standard output to connect the SUT to JTORX. In general, the connection is
straightforward and easy to achieve.

The test cases generated from the model covered 96% of the lines of code and 95% of
the branches in the FWGC Java implementation.

As mentioned before, JTORX supports the implementation relations ioco and uioco.
JTORX generates inputs and checks outputs, and it does on-line MBT.

JTORX is available for Linux, Mac and Windows, but others can be added. For our
experiments we installed it on Windows and Linux, which was easy. The user interface of
JTORX is user-friendly and simple. The tabs are clearly arranged and it is straightforward
to get the tests running. For this purpose only a few instructions are required. However,
the documentation included is only moderate. For the SUT used, i.e. the implementation
of the FWGC puzzle, JTORX was a very suitable MBT tool. All tests could be carried out
as desired and the results were as expected. When a SUT-mutant of the imp was added,
the tool was able to find it.

UPPAAL-TRON UPPAAL-TRON is an MBT tool based on the Uppaal engine [7]. It
can be used for black-box conformance testing of timed systems and it mainly targets
embedded software. It tests systems in an on-line fashion: tests are derived, executed and
checked while maintaining the connection to the system in real-time.

UPPAAL-TRON can be connected to the SUT in several ways. The communication can
either be done using a TraceAdapter or a SocketAdapter. The TraceAdapter uses standard
input and standard output for communication. In our experiments we used the SocketAd-
apter to achieve communication with UPPAAL-TRON. The SocketAdapter communicates
using TCP sockets. The UPPAAL-TRON package comes with pre-made Java classes that
implement the protocol it uses. In order to use the SocketAdapter, these classes and some
additional setup code have to be put in place around the SUT. In order to test a program
with Uppaal UPPAAL-TRON, first a model and an environment need to be created in Up-
paal. For our experiments we created a detailed model of the FWGC puzzle in Uppaal.
The environment used does not contain any logic; it simply consists of one state that has
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a transition leading to itself for every available channel. When such a model and envir-
onment have been created, it is possible to use UPPAAL-TRON, to load the model, and
generate test cases for the SUT. In order to communicate, it uses sockets which require
implementation of a SocketAdapter for the SUT. After the necessary adapter construction,
we compared the SUT and the model using UPPAAL-TRON. After a few iterations of the
model, all tests runs succeeded and a pass verdict was returned.

The test cases generated from the model covered 92% of the lines of code and 88% of
the branches in the FWGC implementation.

UPPAAL-TRON is available for Linux and Windows. It supports the implementa-
tion relation rtiocoe (relativized timed input-output conformance) [8]. This relation ex-
tends ioco with explicit environment assumptions and takes timing into account, which
is not applicable to our example FWGC that does not have any real-time characteristics.
UPPAAL-TRON generates input data and checks output data.

Based on its specifications, Uppaal UPPAAL-TRON seems to be a good tool for real-
time embedded systems. The tool also has comprehensive documentation that allows
starting quickly. However, compared to JTORX, UPPAAL-TRON is slightly more difficult
to use.

GAST GAST is a generic automatic software test-system that is implemented in the
functional programming language Clean Kooetal03. Its primary goal is to test software
written in Clean. However, GAST is not restricted to software written in Clean. In GAST,
there are two kinds of functions that need to be defined: properties and the SUT. Prop-
erties, which are expressed as functions in Clean, are used in the tests to check whether
they hold for the SUT. The SUT is a function which accepts a certain amount of arguments
defined with specific types. The type information is used by GAST to generate test-data
automatically. Also the other steps in the functional testing process, i.e. test execution
and test result analysis, can be performed fully automatically by GAST.

In GAST, the implementation and specification are defined by Clean-functions. The
specification function takes a state and an input and results in a list of possible states com-
bined with output. The implementation function takes an implementation state as an input
and results in a collection of possible output implementation states. We accomplished
communication with the Java implementation through the implementation function using
stdin and stdout and linking those to Java. Because inputs and outputs had to be writ-
ten and read alternately, a quiescence output from Java to GAST has been added, so that
every input resulted in one output. Alternatively, we connected Java and GAST using
pipes, which also worked fine after solving a buffering problem of Clean. To allow GAST

to perform multiple test runs, we extended the Java program with a reset input.
The test cases generated from the model covered 98% of the lines of code and 95% of

the branches in the FWGC implementation.
To use GAST, you need a Clean 2.0 system with generics, which is available for Linux

and Windows. The implementation relation supported by GAST is a version of ioco for
Mealy Machines. GAST generates input data and check output data; it works in an on-line
fashion.

There is no graphical modelling tool, therefore models, inputs, and outputs must be
defined in the Clean programming language. GAST seems to be a very powerful tool
with Clean as a very expressive language, but Clean is not easy to learn, which makes
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using GAST a challenging task. Unfortunately, documentation is hardly available, which
could have solved this problem to some extent. Moreover, it has no standard options
to communicate with external SUT. Thus, compared to the other MBT tools, adapter
construction and connecting the SUT is more complicated.

MODELJUNIT MODELJUNIT is a Java library that extends JUnit to support model-
based testing3. The models in MODELJUNIT are finite state machines (FSM) or extended
finite state machines (EFSM) written in Java by using the given framework. Models are
classes with methods that implement the states and, if necessary, the guards to allow the
EFSM to enter that state. The internal state of the model is saved in the state variable in
form of an integer enumerating the states. The implemented models are fed to a Tester
instance (random, greedy and look-ahead testers are available already). After connecting
listeners to the Tester instance, a couple of test cases can be run.

To allow automatic test runs, the model has to communicate with the SUT. The class
that implements the SUT is passed to the SUT in MODELJUNIT in form of a command line
string which is executed (i.e., a process instance is created) on instantiation or on reset of
the model. If the model wants to emit an input string to the SUT, the message() method
is called with this string and it is sent to the standard input of the SUT. The same method
can be used to read a string from the SUT. The last character of the parameter of the
message() method is used to determine whether the message is and input (?) or output
(!).

Coverage In order to obtain coverage of the model, certain coverage metric instances
can be added to the Tester instance as well (as of this writing the API documentation
includes action, state, transition and transition-pair coverage). After implementing the
model, we instantiated the Tester and ran it. Unfortunately, we did not see a way to obtain
understandable output from the test runs by using the verbose listener. No other listener
worked, and thus running a couple of test cases is possible but not useful. MODELJUNIT

offers classes to obtain coverage information on test runs. This gave some results, but
this value depended strongly on how many test cases were run and according to this the
results are not reliable.

MODELJUNIT is OS independent. In the documentation we could not find any in-
formation on supported implementation relations. Actually, the documentation of MODELJUNIT

is non-existent in terms of usable documentation: the API is documented by JavaDoc and
there is one example on how to implement a model available on the project homepage.
Yet there is no handbook available apart from [15], which supposedly has at least one
chapter about MODELJUNIT. Maybe due to the lack of documentation, it was difficult
to use the tool. For example, we were not able to obtain a clear error message in case
the SUT behaved differently with respect to the model. Moreover, we had problems with
modeling the specification, which could have been circumvented with a clear description
of how to use the guards and how to update the current state.

GRAPHWALKER According to their website GRAPHWALKER is an open source tool
for model-based testing. However, their interpretation of MBT is different from how we
understand the term. GRAPHWALKER is a tool for generating off-line and on-line test

3http://www.cs.waikato.ac.nz/ marku/mbt/modeljunit/
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sequences from finite state machines and extended finite state machines. When using
the tool, it is possible to create long, unpredictable test sequences with high variation
and randomness, which will result in better test coverage of the system under test. In our
experiments, we reached 96% statement coverage and 94% branch coverage of the FWGC
implementation. As a result, GRAPHWALKER is a powerful tool for test data generation
and test execution. However, it does not support test result analysis. We did not find
any means to produce a verdict or to check whether the output generated by the SUT is
correct. Because GRAPHWALKER has less functionality than the other tools concerning
the entire MBT process, we do not include it in our overall comparison.

Summary

The table below summarizes the main results of our investigation. Based on our exper-
iences with the tools, we assigned points at a scale from one (bad) to five (good) for
connection to SUT, coverage, supported implementation relation(s), platforms, ease of
use and documentation. GRAPHWALKER is not included in the table due to its different
focus.

JTORX UPPAAL-TRON GAST MODELJUNIT

connect. to SUT 5 4 2 4
coverage (st./br.) 96%/95% 92%/88% 98%/95% N/A
impl. rel. ioco,uioco ioco,rtioco ioco (FSM) N/A
platforms Lin.,Mac,Win. Lin.,Win. Lin.,Wind. indep.
ease of use 4 3 2 2
documentation 3 4 2 2

Altogether, we can conclude that JTORX seems to be the most capable tool for the
system under test and model we used. JTORX gives good results, it is very user-friendly,
and easy to use. However, our comparison is very limited, we did not use all functionality
of the different testing tools, and we were perhaps not completely without bias,, being
already familiar with JTORX. In case of real-time embedded systems, UPPAAL-TRON

will probably outperform JTORX (there a real-time variant of JTORX [3] which we did
not consider here).

Of course, a more elaborate comparison is necessary, involving more tools, using more
criteria, and applying the tools to other SUTs, in order draw hard conclusions, but this
first investigation gives already first insights in other model-based testing tools. Another
comparison is e..g, [16].

Discussion

A couple of points need mentioning when looking at the results of this short comparison:

• Some tools only support the generation of test-input data; checking the correctness
of outcomes is not supported, and consequently must be arranged in a different
way. All Quasimodo tools support both test-input data generation and checking of
outcomes.
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• For connection between the SUT and the MBT tool (the adapter) JTORX seems to
be the winner: the connection can be made without programming in the MBT tool.
All other tools need some kind of programming in the adapter on in the tool itself.

• Code coverage differences are not significant. Moreover, for real comparison, more
information is needed, such as length of test cases, duration of test campaign, etc.

• MODELJUNIT and GRAPHWALKER do not say anything about an implementation
relation, which makes it impossible to predict what kind of errors they will detect.
It looks like these tools only support deterministic models, (although they are not
explicit about that). For fully deterministic models most most implementation rela-
tions coincide anyhow, but as the Quasimodo case studies show, testing embedded
systems requires dealing with nondeterminism.

• All tools have at least an on-line testing option. The tools with explicit implement-
ation relation are only on-line.

• Most tools run at least on Linux and Windows.

• For most tools, except for UPPAAL-TRON, documentation seems to be an after-
thought. Yet, JTORX is considered more user friendly.

• These tools are very interesting research and experimental vehicles, but not yet full
industrial strength tools.

7 Towards Integration of Hybrid, complex data, and other
aspects

Quasimodo has developed strong tool components for testing control, real-time, complex
data, and stochastic models.

However, they are not fully integrated in the sense that one tool component supports
all aspects. As discussed, handling time, data intensive, hybrid, costs and stochastics in-
tegrated into the same omni-potent notation and algorithmic core is (at best) challenging,
it is a question whether a more feasible approach (especially in the short term) would be
to integrate specialized tool components.

We developed an approach for testing hybrid systems based on an integration of
UPPAAL-TRON and Simulink as described in Deliverable 4.6. Moreover, as specifically
reported in D5.9, a unifying framework for symbolic model-based testing (aimed at hand-
ling complex data structures and data dependencies) is being carved out and prototyped
implemented for the JTorX/STSSimulator tools. The challenge of hiding the underlying
diversity is handled through Domain Specific Languages for modeling.

A future vision may therefore be to integrate the specialized test tool components to
exploit their individual strengths via a a common “test-tool-bridge” framework, as illus-
trated in Figure 2 However, developing such a framework that enables tool components to
synchronize and exchange information in a well-defined semantically sound manner will
require further research beyond Quasimodo.
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Figure 2: A possible future tool integration framework.
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